忍者ブログ

リリースコンテナ第3倉庫



Home > ブログ > > [PR] Home > ブログ > 未選択 > 産総研、チタン酸化物負極材料(HTO)の粒径制御技術を開発

[PR]

×

[PR]上記の広告は3ヶ月以上新規記事投稿のないブログに表示されています。新しい記事を書く事で広告が消えます。

産総研、チタン酸化物負極材料(HTO)の粒径制御技術を開発

チタン酸化物負極材料(HTO)の粒径制御技術を開発
-粒径制御により高容量化を実現-



<ポイント>
 ・次世代リチウムイオン電池用酸化物負極材料の特性を改善
 ・酸化物重量当たりの充放電容量を約250mAh/gに高容量化
 ・従来の製造プロセスの簡単な改良で実現可能


<概要>
 独立行政法人 産業技術総合研究所【理事長 中鉢 良治】(以下「産総研」という)先進製造プロセス研究部門(https://unit.aist.go.jp/amri/)【研究部門長 淡野 正信】結晶制御プロセス研究グループ 永井 秀明 主任研究員、片岡 邦光 研究員、秋本 順二 研究グループ長は、リチウムイオン二次電池用の負極材料であるチタン酸化物H2Ti12O25(*)(以下「HTO」という)の充放電量を高容量化できる粒径制御技術を開発した。

 *「H2Ti12O25」の正式表記は添付の関連資料を参照

 この技術ではHTO合成の原料であるチタン酸ナトリウムNa2Ti3O7(*)粉体を粒径制御することで、HTOの酸化物重量当たりの充放電容量を約250mAh/gに高容量化できる。これは、粒径制御しないHTOを用いた場合の225mAh/gを上回る。また、従来の製造プロセスの簡単な改良により高容量化、レート特性の改善ができることから、電気自動車、ハイブリッド車などの電動車両用リチウムイオン二次電池の高容量化・低コスト化につながるものと期待される。

 *「Na2Ti3O7」の正式表記は添付の関連資料を参照

 なお、この技術の詳細は、2014年1月29~31日に東京ビッグサイト(東京都江東区)で開催される第13回国際ナノテクノロジー総合展・技術会議(nano tech 2014)にて発表される。

 ※グラフ資料は添付の関連資料を参照


<開発の社会的背景>
 最近、大型のリチウムイオン二次電池が車載用や定置型電源用として注目を集めている。これらの用途では、電池の入出力特性、エネルギー密度の向上とともに、安全性確保や長寿命化、低コスト化が重要であり、負極に酸化物系材料を使用したリチウムイオン二次電池が期待されている。しかし、現行の負極材料であるチタン酸リチウム(Li4Ti5O12(*))は酸化物重量当たりの充放電容量が175mAh/gと低いため、チタン酸リチウムと同程度の電圧で、200mAh/gを超える高容量の酸化物負極材料が望まれている。

 *「Li4Ti5O12」の正式表記は添付の関連資料を参照


<研究の経緯>
 産総研は、これまでに低温合成プロセスの一つであるソフト化学合成法を適用したチタン酸化物の合成とその構造・物性評価に関する研究に取り組んできた。その中で、石原産業株式会社と共同で、現行材料と同程度の電圧で200mAh/gを超える高容量の新規チタン酸化物負極材料であるHTOを開発した(2010年10月25日産総研プレス発表)(http://www.aist.go.jp/aist_j/press_release/pr2010/pr20101025/pr20101025.html)。その後、HTOのさらなる高容量化や入出力特性の改良を目指して、粒径制御技術や製造プロセスの研究開発に取り組んできた。


<研究の内容>
 今回の技術は、原料の骨格構造の特徴を保持しつつ化学組成を変化させる、ソフト化学合成法を用いた。原料であるNa2Ti3O7粉体の粒子形態が最終生成物であるHTOの粒子形態に強く反映されることを利用している。まず、従来の製造プロセスに容易に組み込める粒径制御技術である粉砕技術を用いてNa2Ti3O7粉体(平均粒径約2μm)の粒径制御を行った。粒径制御したNa2Ti3O7粉体を熱処理して骨格構造を安定化させ(平均粒径約0.2μm)、60℃で酸処理を行ってHTOの前段階の物質であるH2Ti3O7(*)とした。その後、200~300℃程度に加熱することで、粒径制御したHTOを作製できる。図1に粒径制御したHTOの充放電サイクル特性を示す。室温で、1サイクル目の充電容量は307mAh/g、放電容量は249mAh/gであり、充放電効率は81%であったものの、5サイクル目で充電容量244mAh/g、放電容量243mAh/gと、充放電効率がほぼ100%の可逆性の高い充放電特性が確認され、それ以降のサイクルでは安定な充放電を示した。

 *「H2Ti3O7」の正式表記は添付の関連資料を参照

 ※図1は添付の関連資料を参照

 この粒径制御したHTOの充放電容量は、結晶構造解析から導出されたHTOの理論容量(274mAh/g)の約90%であり、また、化学的に挿入・脱離可能なリチウム量から見積もった容量(256mAh/g)にほぼ等しいことから、粒径制御を行うことでHTOの潜在能力を引き出せたものと考えられる。

 また、実用に近い電極組成(活物質83%、導電助剤10%、結着剤7%)の電極を試作して25℃で評価したところ、1時間率(1C)相当の220mA/gの電流密度で200mAh/gを超える充放電容量が維持されていた(図2)。さらに、図3に示すように粒径制御によってレート特性の改善も見られ、例えば、充電レートが1Cの場合には、粒径制御なしでは164mAh/gであったものが、粒径制御によって210mAh/gと200mAh/gを超えていた。これらのことより、今回開発した粒径制御技術によりHTOの充放電容量とレート特性を改善できた。

 ※図2、3は添付の関連資料を参照


<今後の予定>
 今後は、HTOの開発で連携している石原産業株式会社と協力して量産化技術を確立し、電池メーカーをはじめ産業界へのサンプル提供の準備を進める。

PR

Comment0 Comment

Comment Form

  • お名前name
  • タイトルtitle
  • メールアドレスmail address
  • URLurl
  • コメントcomment
  • パスワードpassword